Octave graphic add-on, Octplot



česky

2.4 Involute, cycloid, epicycloid



Function file: involute(m,n,r,t,q,fmt)


This function plots an involute, defined by:
  • 1 involute - starting point in [m,n], radius r, angle t; all values are scalars
  • n-involutes - starting points in [m,n], radius r, angle t; all values are vectors (expect fmt)

Parameters m,n describe centre of the involute in axes x,y.
Parameter r describe radius of the involute.
Parameter t is angle of generating, it set in radians.
Parameter q is for change compute points on the involute, so quality.
Parameter fmt describe format of involute lines. You can change format of lines (color and style) and format of points.

Example:
involute(3,-4,5,2*pi,100,"m");



download m-file



Function file: cycloid(m,n,r,t,q,fmt)


This function plots a cycloid, defined by:
  • 1 cycloid - starting point in [m,n], radius r, angle t; all values are scalars
  • n-cycloids - starting points in [m,n], radius r, angle t; all values are vectors (expect fmt)

Parameters m,n describe centre of the cycloid in axes x,y.
Parameter r describe radius of the cycloid.
Parameter t is angle of turn of generating circle, it set in radians.
Parameter q is for change compute points on the cycloid, so quality.
Parameter fmt describe format of cycloid lines. You can change format of lines (color and style) and format of points.

Example:
cycloid([2,0,3],[-1,0,2],[2,3,2.5],[4*pi,4*pi,4*pi],[80,120,100]);





Function file: epicycloid(m,n,r1,r2,t,q,fmt)


This function plots an epicycloid, defined by:
  • 1 epicykloida - starting point in [m,n], radius r, angle t; all values are scalars
  • n-epicykloid - starting points in [m,n], radius r, angle t; all values are vectors (expect fmt)

Parameters m,n describe centre of teh epicycloid in axes x,y.
Parameter r1 describe radius of generating circle.
Parameter r2 describe radius of fixed circle.
Parameter t is angle of turn of generating circle, it set in radians.
Parameter q is for change compute points on the epicycloid, so quality.
Parameter fmt describe format of epicycloid lines. You can change format of lines (color and style) and format of points.

Example:
epicycloid([2,0],[5,0],[5,6],[2,3],[2*pi,3*pi],[100,120]);






<<< 2.3 Ellipse, hyperbola, parabola 2.5 More function at once >>>

© 2008 David Prokop